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Abstract

In this paper a time-domain aeroelastic analy-

sis code is described for single airfoils and two-foil

systems in incompressible, inviscid ow. Flow solu-

tions are obtained using a time-stepping panel code,

and airfoil motions are computed using a two-degree-

of-freedom (TDOF) spring/mass model. The time-

stepping aeroelastic code is evaluated through compar-

isons with several classical frequency-domain studies

for both single-degree-of-freedom (SDOF) and TDOF

motions. SDOF results show excellent agreement with

past studies and, furthermore, provide a look into the

evolution of the motion in time. Additionally, using

a two-foil system, it is shown that utter of a trail-

ing airfoil can be controlled by proper oscillation and

phasing of a leading airfoil. TDOF results highlight

a step-size dependence of the panel code, but again

demonstrate the active utter control by means of an

oscillating leading airfoil. A method for simulating un-

steady rotary wing ow�elds with the two-foil aeroe-

lastic code is described, and comparisons with past

frequency-domain studies show good agreement.

Nomenclature

c = chord length

Cl = lift coe�cient per unit span

Cm = pitching moment coe�cient per unit span

h = bending displacement (positive downward)

h
� = wake spacing in rotary wing ows

I� = moment of inertia about the elastic axis

k = reduced frequency, !c=V1
k� = reduced natural pitching frequency

kh = reduced natural plunging frequency

kF = reduced utter frequency

y NRC Research Associate, member AIAA.
z Professor, Dept. Aeronautics and Astronautics,

Associate Fellow, AIAA.

This paper is declared a work of the U.S. Govern-

ment and is not subject to copyright protection in the

United States.

Kh = spring constant for plunging

K� = spring constant for pitching

L = lift per unit span

m = mass of the wing per unit span

m
� = !=


M = pitching moment per unit span

q(s) = source strength distribution

r = radius of rotary wing blade section

S� = static moment, x�m

t = time

V� = reduced velocity, 1=k�
V1 = freestream velocity magnitude

xp = leading edge to elastic axis distance

x� = elastic axis to center of mass distance

Xshift = horizontal o�set of the control airfoil

Yshift = vertical o�set of the control airfoil

� = angle of attack

(s) = Vorticity strength distribution

�K = Vorticity due to airfoil motion at Kth step

� = complete velocity potential

'1 = uniform ow velocity potential

'
CV

= core vortex velocity potential

'
S

= distributed source velocity potential

'
V

= distributed vorticity velocity potential

'
W

= wake panel velocity potential

� = wake wavelength, 2�=k

! = circular frequency

!h = uncoupled natural bending freq.,
p
Kh=m

!� = uncoupled natural torsional freq.,
p
K�=I�


 = rotary wing rotational frequency

�1 = freestream density

� = nondimensional time, tV1=c

(_) = di�erentiation with respect to t

( )0 = di�erentiation with respect to �

I. Introduction

For many decades, scientists have been aware of

the danger of structural failure due to aerodynami-

cally driven oscillations. A classic example of this phe-

nomenon occured in 1940 when the Tacoma Narrows

bridge, driven by the ambient wind, came apart after

many hours of divergent resonation.1 This behavior,



called utter, also occurs on aircraft wings and empen-

nages, helicopter and propeller blades and in turbo-

machines, such that applications for this research are

plentiful. The study of these aerodynamically driven

motions is referred to as aeroelasticity.

Most utter codes used in the aerospace industry

are based on linearized oscillatory aerodynamic theory

as input into the utter equations, solving the utter

problem in the frequency-domain rather than in the

time-domain. However, many modern computational

uid dynamics (CFD) codes employ a time-marching

approach which suggests that the use of such codes

for the prediction of airfoil/blade utter and dynamic

response may become a practical approach in the near

future.

The current method utilizes such a time-stepping

approach with an unsteady panel method to describe

the inviscid, incompressible ow�eld and with a TDOF

spring/mass system to model the twisting and bending

of the airfoil/blade geometry. The algorithms used in

the code are outlined in the following sections. Addi-

tionally, an active control loop used to suppress ut-

ter of the trailing airfoil in a two-foil system and a

method for simulating unsteady rotary wing ow�elds

are described. Finally, the accuracy and limitations

of the approach are determined through comparisons

with past theoretical and numerical studies.

II. Approach

Aeroelasticity is a multi-disciplinary subject com-

bining aerodynamics and structural dynamics. The

methods used for each of these �elds are discussed in

some detail in this section. The methods used to sim-

ulate the unsteady, wake-induced e�ects on helicopter

blade utter are outlined as well.

Aerodynamics Consider incompressible, inviscid

ow over two airfoils of arbitrary geometry which may

execute an arbitrary motion relative to each other.

The basic governing equation for this problem is, there-

fore, the Laplace equation.

In the past, a number of investigators have solved

the steady ow problem using source and vortex pan-

eling, the most prominent ones being Hess and Smith.2

A few authors have extended this approach to the case

of unsteady motion of single airfoils, notably Basu and

Hancock3 and Kim andMook.4 At the Naval Postgrad-

uate School, Teng5 developed a computer code for the

numerical solution of unsteady, inviscid, incompress-

ible ow over an airfoil. Teng's work was extended by

Platzer et al6 to investigate interference e�ects with

multiple airfoils. Each airfoil surface is approximated

by a large number of surface elements, and a uni-

form source distribution and vorticity distribution are

placed on each element. The source strength varies

from element to element, while the vortex strength is

the same for all elements. The singularity strengths

are determined from the ow tangency condition on

both airfoil surfaces and the Kutta condition at each

trailing edge. This approach currently is limited to

cases where vortices shed from the upstream airfoil do

not impinge directly upon the downstream airfoil. Yao

and Liu,7 in their recent work, have been able to ac-

count for vortex impingment.

The unsteady ow problem di�ers from the steady

ow problem in that the continuous shedding of vortic-

ity into each foil's trailing wake needs to be included

in the computation. According to the vorticity con-

servation theorem, any change in circulation around

an airfoil must be matched by an equal and opposite

vortex shed from the foil's trailing edge. The presence

of the countervortices provides the ow with a kind of

memory in that the ow at a particular time is a�ected

by the bound circulation of the past. It is this nonlin-

earity that distinguishes the numerical technique re-

quired for the unsteady ow solution from the simpler

steady ow problem of solving N linear equations in

N unknowns.

The solution technique requires an iterative type

solution. The present approach follows closely the

original panel method of Hess and Smith, while with

regard to the modeling of the wake it adopts the proce-

dure advocated by Basu and Hancock. Uniform source

and vorticity distributions are placed on each panel at

time t. The wake consists of a single vorticity panel at-

tached as an additional element on each airfoil through

which the vortices are shed into the respective wake as

a series of point vortices which are being convected

downstream with the uid. A uniform vorticity dis-

tribution is placed on the wake panel of each airfoil.

This panel is further characterized by its length and

its inclination with respect to the local frame of refer-

ence. After each time step, the vorticity of the wake

panel is concentrated into a single point vortex and

convected downstream. Simultaneously, a new wake

panel is formed. The downstream wake of point vor-

tices is thus formed by the shed vorticity of previous

time steps.

As is well known, the overall ow�eld can be built

up by three simple ows, namely a uniform ow, a

source ow, and a vortex ow. The velocity potentials
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of these ows can be linearly superimposed, i.e.,

� = '1 + '
S
+ '

V
; (1)

where the velocity potential of the uniform ow is

given by

'1 = V1(x cos�+ y sin�) ; (2)

the velocity potential of a source distribution, q(s), per

unit length by

'
S
=

Z
q(s)

2�
ln(r)ds (3)

and the velocity potential of a vorticity distribution,

(S) per unit length, by

'
V
= �

Z
(s)

2�
�ds : (4)

For the analysis of unsteady airfoil motions it is nec-

essary to add the contributions from the previously

mentioned wake panels and the trailing core vortices

for each airfoil, hence

� = '1 + '
S
+ '

V
+ '

W
+ '

CV
(5)

where the wake panels are treated as an extension of

each airfoil's surface and

'
CV

= �

KX
k=2

�k � �k�1

2�
tan�1

y � yk

x� xk
(6)

with K the total number of time steps and (xk; yk) the

coordinates of the kth core vortex.

The ow tangency conditions are satis�ed at the

exterior mid-points (control points) of each panel. The

Kutta condition postulates that the pressure on the

upper and lower surface at the trailing edge of each

panel be equal.

The wake panels are formed with a length and

inclination to the respective local frames of reference

that satisfy the Helmholtz theorem

�k(W )k + �k = �k�1 : (7)

At the next time step the wake panel is detached from

the trailing edge and is convected downstream as a

concentrated vortex. This unsteady ow model there-

fore introduces an additional boundary condition, i.e.,

the conservation of vorticity. However, the introduc-

tion of the wake creates three additional unknowns for

each airfoil, namely the vorticity of the wake panel,

its length and its inclination. Therefore, two addi-

tional conditions are required for each airfoil in order

to solve the system. The approach suggested by Basu

and Hancock is extended to the two-foil case:

1. The wake panel is oriented in the direction of the

local resultant velocity at the panel midpoint.

2. The length of the wake panel is proportional to

the magnitude of the local resultant velocity at

the panel midpoint and the size of the time step.

The essential elements of this scheme are sum-

marized in Fig. 1.

θk

γwk

Γk
∆ k

jj+1

{Panel j

γk

(q )j   k
V 8

(Γ    −Γ    )k−3 k−2

(Γ    −Γ    )k−2 k−1

Figure 1. Schematic of the unsteady panel code.

For the development of the computational pro-

cedure, the important concept of inuence coe�cients

is used. Formally, an inuence coe�cient is de�ned as

the velocity induced at a �eld point by a unit strength

singularity placed anywhere in the ow�eld. The ow

tangency and Kutta conditions require the computa-

tion of the normal and tangential velocity components

at all the control points. Furthermore, as a result of

the wake model additional inuence coe�cients need

to be de�ned. Detailed explanations of these inuence

coe�cients and of the solution procedure are given in

Teng and in Pang.8 A thorough evaluation of the ac-

curacy of the panel code was performed by Riester9

by comparing the computed lift and moment coe�-

cients for both pitch and plunge motions with those of

Theodorsen and Garrick.10

Structural Dynamics For the computation of mo-

tion a TDOF spring/mass system, illustrated in Fig.

2, is used to model the bending and twisting of the

wing. The equations governing this motion are

m�h+ S���+m!
2

hh = �L (8)

and

S�
�h+ I���+ I�!

2

�� = M ; (9)
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where the dots denote di�erentiation with respect to

time. Note, Eqs. (8) and (9) assume that � is small,

replacing cos(�) with 1 in the coupling term, S�.

Figure 2. Schematic of the spring/mass system.

Nondimensionalizing the system using reference

values of length=c, velocity=V1, time=c=V1 and

mass=c2��1=4, and rewriting the system in matrix

notation, one obtains

[M]fXg00 + [k]fXg = fFg (10)

where

[M] =

�
m S�

S� I�

�
; [k] =

�
m!

2

h 0

0 I�!
2

�

�
;

fXg =

�
h

�

�
and fFg =

2

�

�
�Cl

Cm

�
;

and where the primes denote di�erentiation with re-

spect to nondimensional time.

Equation (10) is a system of two, coupled, second-

order, nonlinear, di�erential equations, nonlinear in

that Cl and Cm are functions of h and �. SDOF sim-

ulations may be performed by setting S� = 0 and ei-

ther m = 1 and !h = 0 or I� = 1 and !� = 0 for

pitching-only or plunging-only motions, respectively.

Equation (10) is advanced in time by �rst solving

for fXg",

fXg
00 = [M]�1fFg � [M]�1[k]fXg ; (11)

then rewriting the result as a system of two coupled,

1st-order equations

fXg
0 =fY g

fY g
0 =[M]�1fFg � [M]�1[k]fXg ;

(12)

and, �nally, integration is performed using either a

2nd-order modi�ed Euler scheme or a 4th-order Runge-

Kutta scheme. Note that the iterative modi�ed Euler

scheme reduces to a 2nd-order Runge-Kutta scheme if

just two iterations are used.

The TDOF spring/mass integration procedure

was validated by setting Cl = Cm = 0 (simulating

an undamped system) and computing the total energy

(kinetic and potential) of the system at each time step.

With just 30 steps per cycle the 4th-order scheme com-

puted about a 0.005% loss in total energy per cycle for

coupled or uncoupled motions.

Rotary Wing Flow�elds Simulations of wake in-

terference in rotary wing ow�elds are performed in

a two-dimensional, strip-theory fashion similar to the

approach of Loewy.11 Loewy approximated the heli-

cal wake structure beneath a hovering helicopter at a

given radial station as a two dimensional ow with a

single blade section with an in�nite series of wakes be-

neath it, as shown in Fig. 3a. The wake separation, h�,

was a function of the inow velocity, and the phasing

was determined by the ratio of the pitching frequency

to the rotational frequency, m� = !=
. To simplify

computations, Loewy assumed that these wakes ex-

tended to �1.

Figure 3. Schematics for rotary wing simulations.

In the present approach only a single, �nite-length

wake is considered, and this is facilitated by placing a

second blade upstream a distance 2�r (the circumfer-

ential length for the radial station, r), and below the

�rst blade the distance h
�, as portrayed in Fig. 3b.

The reduced pitching frequency is determined directly

from the speci�ed frequency ratio, k = m
�
=r.
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III. Results

The following subsections present results of single-

and two-airfoil systems with SDOF and TDOF mo-

tions. Additionally, an active control loop for two-

airfoil systems is introduced, and sample results are

given, followed by simulations of wake interference in

rotary wing ow�elds.

Single Airfoil SDOF Results for a single airfoil

undergoing pitching motions are compared with the

classical works of Theodorsen and Garrick and of Smilg12

and the more contemporary work of Turner.13 Theo-

dorsen and Garrick considered the pitching motion of

a at plate with arbitrary k� and I� about a speci�ed

elastic axis, xp. They showed that kF was independent

of I�, and for xp = 0, kF � 0:08.

The present method introduces a perturbation

angle of attack displacement at � = 0, and computes

the resulting motion as a function of time. Sample

time histories of � are given in Fig. 4 at a stable, a

neutral and an unstable frequency for a NACA 0007

airfoil with I� = 150.

0 100 200 300
τ

-0.50

0.00

0.50

1.00

α

ka=0.04, k=0.0905
ka=0.09, kf=0.1205
ka=0.15, k=0.1606

Figure 4. SDOF time history of �.

The frequency response predicted by the present

approach is compared to the at-plate results in Fig.

5 for a spectrum of airfoil thicknesses and I�'s. Each

cluster of 3 curves corresponds to the value of I� in-

dicated in the legend, with the lower, middle and up-

per line of each group corresponding to a NACA 0001,

NACA 0007 and NACA 0012 airfoil, respectively. The

�, and � symbols are located at the predicted utter

frequencies, kF , for the di�erent airfoils and I� values

(i.e., the frequency where a constant amplitude oscilla-

tion is maintained). Note that for each of the NACA

airfoils kF is constant with respect to I�, and even

though the frequency response does not change much

with thickness, the utter frequency changes signi�-

cantly. As I� increases, the e�ect of thickness becomes

less apparent in the curves, and the curves rapidly ap-

proach the theoretical undamped response for I� =1.

According to Smilg, a at plate will not utter

for I� less than about 143. This is indicated by the fre-

quency response curves shown in Fig. 5. For I� lower

than about 150 the response curves do not intersect

the line kF = 0:08.

0.00 0.05 0.10 0.15
k_alpha

0.00

0.05

0.10

0.15

0.20

k
Ia=50
Ia=150
Ia=1250
Ia=>infinity
NACA 0001
NACA 0007
NACA 0012
flat plate

Figure 5. SDOF frequency response for xp = 0.

The relationship for k�=kF as a function of I� is

derived fromat plate theory as k�=kF =
p
1 + 143=I�.

This curve is plotted with those predicted by the present

scheme in Fig. 6 for several airfoil thicknesses. It can

be seen that as the airfoil thickness approaches zero

the time-domain results approach at-plate theory.

0 250 500 750 1000 1250
Ια

0.0

0.5

1.0

k_
al

ph
a/

k_
f

flat plate (Smilg)
NACA 0001
NACA 0007
NACA 0012

Figure 6. Frequency ratio dependence on I�.
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The method employed by Turner used the cur-

rent panel code, pitching the airfoil sinusoidally. Si-

nusoids were �t to the resulting Cm curve, and sta-

bility was determined by the sign of the out-of-phase

portion. For a NACA 0007 airfoil Turner predicted

kF � 0:115, whereas the present method predicts kF �

0:120. Both methods found a slight step-size depen-

dence in the predicted amplitudes of Cl and Cm but

found this to be inconsequential in the resulting SDOF

motion and utter frequencies.

Single Airfoil TDOF Data for a single airfoil with

both pitching and plunging motions are available for

comparison from Theodorsen and Garrick and Turner.

Unfortunately, while the small step-size dependence of

Cl and Cm did not a�ect the SDOF motion appre-

ciably, they do a�ect the TDOF motion. In Fig. 7

the stability bounds predicted by at-plate theory and

Turner are shown with the stability bounds predicted

by the new code for several step-sizes and with m = 2,

I� = 0:125, xp = 0:3 and x� = 0:1. Turner's re-

sults predicted less stable behavior than at-plate the-

ory, arguably due to the �nite airfoil thickness (NACA

0007) used by Turner.

0.0 0.2 0.4 0.6 0.8
k_h/k_alpha

0.8

0.9

1.0

1.1

1.2

V
_a

lp
ha

Theodorsen (flat plate)
Turner (NACA 0007)
dt=0.10 (~80 its/cycle)
dt=0.15 (~55 its/cycle)
dt=0.20 (~40 its/cycle)
dt=0.25 (~32 its/cycle)

Figure 7. TDOF utter boundaries.

Turner's results were not greatly a�ected by the

amplitude errors, since only the phase relationships be-

tween the motion and Cl and Cm were used to predict

stability. On the other hand, since the airfoil motion

computed by the new code is directly determined by

the amplitudes of Cl and Cm, any errors feed back

into the solution, such that the error grows in time.

Qualitatively, the shape of the stability bound is con-

sistent with Turner, but no quantitative statement can

be made.

Two Airfoil SDOF Airfoil/wake interference sim-

ulations with two airfoils are compared to the frequency-

domain work of Turner. For these cases the lead-

ing or control airfoil is pitched sinusoidally between

� = �0:5� with k = 0:1, Yshift = �2:0, xp = 0

and with chord lengths of 1, 1/2, 1/4 and 1/10. The

trailing airfoil starts at � = �0:5� and is released in

sync with the control airfoil with xp = 0, I� = 150

and k� = 0:0585. In the absence of the leading airfoil

these conditions yield an unbounded pitching motion

with k = 0:1. The value of Xshift is varied between 0

and -63. In nondimensional space the wake wavelength

is � = 2�=k or roughly 63.

Values of Xshift resulting in utter suppression

or ampli�cation agree well with Turner. Sample plots

are shown in Fig. 8 for cases that are initially stable,

neutral and unstable.

0 100 200 300 400 500
τ

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
α

control airfoil
Xshift=-14
Xshift=-25
Xshift=-44

Figure 8. Two airfoil wake interference with pitching.

Flutter is suppressed at Xshift = �14 (� ��=4), and

utter is ampli�ed at Xshift = �44 (� �3�=4). Note,

while the control airfoil used in Fig. 8 has a chord

length of 1, results with smaller control airfoils are

similar, with slightly lower damping rates.

Of particular interest here is the evolution of

the free airfoil's motion in time; a facet of the prob-

lem not captured by the frequency-domain methods.

The motion with Xshift = �14, although initially

stable, changes phase by 180� and becomes unsta-

ble once the pitch magnitude becomes small. This

phase/magnitude relationship is illustrated in Fig. 9.

The phase of the case that is initially unstable remains

unchanged for all time, but the phase for the case that
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is initially neutral begins to drift toward an unstable

mode immediately. This tendency for the phase to

drift to unstable modes was previously observed by

Bahkle et al.14

0 100 200 300 400 500
τ

0.0
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-120

-60
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e

Xshift=-14
Xshift=-25
Xshift=-44

Figure 9. Trailing airfoil Phase/magnitude relation.

The stabilizing/destabilizing e�ect of wake in-

terference is perhaps most easily understood by ob-

serving the phase relationship between the impinging

wake's vorticity (positive counterclockwise) and the

angular acceleration of the free airfoil (positive clock-

wise), shown in Fig. 10.
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Figure 10. Vorticity/acceleration phase relationship.

WithXshift = �14 (upper graph) utter is suppressed,

and it can be seen that the vorticity and acceleration

are in-phase (Note, due to the above de�nitions, in-

phase means that they have an opposite sense of ro-

tation). For Xshift = �44 (lower graph) the vorticity

and acceleration are out-of-phase and the motion is

unbounded.

Two Airfoil TDOF Due to the time-step depen-

dency discovered in the single airfoil TDOF simula-

tions a quantitative study of two airfoil TDOF motion

is not possible with the current approach. However, a

qualitative analysis is still useful, primarily in demon-

strating the utter suppression capabilities of an up-

stream control airfoil.

In the included simulations the free airfoil has

xp = 0:3, x� = 0:1, m = 2, I� = 0:125, k� = 1:18

and kh = 0. In the absence of the control airfoil

these settings result in rapidly divergent motion with

k = 0:73 (V� = 1:37). The control airfoil is located

at Yshift = �2 and Xshift values of � ��=4 and

� �3�=4, where � � 8:59. Time history plots of �

are shown in Fig. 11 for the two cases.

0 10 20 30 40
τ

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

α

control airfoil
Xshift=-2.25
Xshift=-6.55

Figure 11. TDOF wake interference.

As with the SDOF case, for Xshift � ��=4 utter is

initially suppressed and withXshift � �3�=4 it is pro-

moted. Unfortunately, as with the SDOF case, utter

suppression is only temporary, as the motion of the

free airfoil drifts from a stable to an unstable phase

angle, and the pitching diverges.

Active Control Loop The short-lived success of

utter suppression in the above cases suggests the use

of an active control loop for determining appropriate

motions of the control airfoil to maintain stability.

The simplest approach is to place the control airfoil

at ��=4 and pitch it exactly as the free airfoil pitches,

thereby correcting for any phase changes of the free air-

foil. This approach works; unfortunately, the rate at

which the pitch oscillations are damped is proportional

to the impinging wake's vorticity magnitude which, in
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turn, is proportional to the pitching magnitude of the

control airfoil. Consequently, pitching of the free air-

foil is suppressed, but at a rate like 1=� , such that the

motion is not completely damped until � =1.

A somewhat more robust feedback loop pitches

the control airfoil with an approximately constant mag-

nitude and with the same phase as the free airfoil.

When the free airfoil motion is damped to a small am-

plitude, the new approach reverts to the �rst method

suggested. This control loop is quite successful, as

shown in Fig. 12.

Airfoil separations other than ��=4 are possible

if an appropriate signal phase delay is given; however,

due to the increased time delay required for the control

airfoil's wake vorticity to convect downstream to the

free airfoil, complete damping becomes di�cult.

0 100 200 300 400 500
τ

-0.50

-0.25

0.00

0.25

0.50

α

free airfoil
control airfoil

Figure 12. Flutter suppression using active control.

All spring/mass settings for the reference foil are the

same here as the case presented in Fig. 8. The control

airfoil is located at Xshift = �14 and Yshift = �2 and

has a chord length of 1/2.

Rotary Wing Flows As indicated in Fig. 3, wake

interference for a single-bladed rotary wing ow (e.g.,

Loewy's equivalent single bladed rotor) is simulated

here by pitching an upstream blade whose wake rep-

resents the reference blade's wake after one rotation

of the rotor system. To further enhance the accuracy

of this wake model the �rst feedback loop option is

used such that pitching motions of the reference blade

are exactly matched by the upstream blade, thereby

generating an identical wake.

In Fig. 13 the e�ect of wake interference from

the preceding blade on the pitch stability of the ref-

erence blade is shown for pitch oscillations about the

leading edge, xp = 0. The blade has a NACA 0007

pro�le, I� = 375 and Yshift = �h
� = �2:5. The

present time-domain approach provides the decay or

growth of the pitch oscillation; therefore, the time rate

of change of pitching amplitude is a convenient mea-

sure of the stability or instability of the pitch oscilla-

tion which is plotted on the ordinate of Fig. 13 as a

function of Loewy's frequency ratio, m� = !=
, on

the abscissa. For conventional cyclic inputs m� = 1,

since blade pitching is mechanically coupled to blade

rotation via the swashplate, but for higher harmonic

control (HHC) and multi-bladed rotor systems m� will

typically be non-integer. Since k = m
�
=r, a variation

of m� implies a variation of k for a given radial sta-

tion r which, in turn, means a relative shifting of the

phase between the impinging wake's vorticity and the

reference blade's angular acceleration, as previously

discussed with reference to Fig. 10. In Fig. 13, r = 8

resulting in Xshift � 50.

0.5 1.0 1.5 2.0
m*

-0.001

0.000

0.001
d[

m
ag

(a
lp

ha
)]

/d
t

two airfoils
single airfoil

Figure 13. Rotary wing stability.

As pointed out in the SDOF section, a single

airfoil becomes unstable at reduced frequencies below

about 0.12. This corresponds to m
� = kr = 0:96,

as shown by the dashed line in Fig. 13. While the

single blade was stable for k > 0:12 (m�
> 0:96),

the inclusion of wake interference from the preced-

ing blade produces a second region of instability for

1:52 � m
�
� 1:84 (0:19 � l � 0:23). The stabiliz-

ing/destabilizing e�ect of the impinging wake is es-

sentially sinusoidal with period m
�, enhancing stabil-

ity through half the cycle and instability for the other

half. The magnitude of this stability enhancement di-

minishes with increasing m�, such that for higher val-

ues of m� no instability occurs. Loewy, in Fig. 15 of

reference 10, shows a similar phenomenon.
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Conclusions

A time-stepping utter analysis code was intro-

duced, combining an unsteady, two-foil panel code with

a TDOF spring/mass motion algorithm for inviscid,

incompressible simulations. The utility and limita-

tions of the approach were demonstrated through com-

parisons with past frequency-domain studies.

Computed SDOF pitching results agreed well with

the frequency-domain results and provided the addi-

tional capability to analyze the evolution of the motion

in time. Qualitatively, trends in frequency response

due to sectional thickness and moment of inertia were

clearly correct, and quantitative agreement was within

the expected bounds a�orded by the panel method.

Computed TDOF results highlighted a step-size

sensitivity of the unsteady panel code which prevented

a quantitative determination of TDOF utter bound-

aries. Future work will replace the panel code with an

Euler/Navier-Stokes solver hopefully alleviating this

de�ciency.

An active control loop algorithm was developed,

and the included results demonstrated its success in

suppressing utter. These simulations indicated that

the controlling airfoil remained e�ective even with greatly

reduced chord lengths, but that e�ectiveness was lost

as the distance between the foils increased. This sug-

gests that a closely placed canard or leading edge ap

may be su�cient for controlling utter.

Wake interference in rotary wing ow�elds was

modelled by placing a second airfoil an appropriate

distance to simulate the blade's wake from the previous

revolution. The computed stability boundaries agreed

well with past frequency domain studies.

The time-domainapproach presented here is quite

robust and e�cient. Typical single airfoil simulations

run on a workstation in about thirty minutes. The ac-

tive control loop and rotary wing simulations demon-

strate just a few of the many applications of the time-

domain approach.
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